
HACKDEFENSE

RESEARCH PAPER

Automating the enumeration of possible
DCOM vulnerabilities

Author:
Axel BOESENACH /
sud0woodo

Describing the research and script to automate the enumeration of vulnerable
DCOM applications

November 23, 2018

https://hackdefense.nl/

i

HACKDEFENSE

Abstract
Information Security

Automating the enumeration of possible DCOM vulnerabilities

by Axel BOESENACH / sud0woodo

This paper describes the research into DCOM applications that might be used for
lateral movement on Microsoft Windows domains. ’Living off the land’ techniques
are used more and more by attackers, but also pentesters and red teams. The re-
search builds on the previous methods and their correlations to develop an auto-
mated manner to enumerate these DCOM applications that might provide lateral
movement.

HTTPS://HACKDEFENSE.NL/
http://faculty.university.com

ii

Acknowledgements
I would like to thank Eva Tanaskoska in particular since her showcase on lateral
movement using DCOM inspired me to research this topic.

A big thank you to Mark Koek, Kenneth Linzey and Rick Verdoes for providing
me with an internship at Hackdefense where I got the freedom to research this sub-
ject. And ofcourse thank you Jacques Tuin for connecting me with HackDefense and
all the effort you put into making sure I had an intership that fit my interests!

Also a huge thank you to Michael Hoebe, Lars Behrens, and the rest at Fox-IT for
continuously providing me with inspiration.

https://hackdefense.com/
https://www.fox-it.com/en/

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 whoami; . 1

2 Background 2
2.1 DCOM showcase . 2
2.2 Why automate this? . 2

3 (D)COM 3
3.1 History of DCOM . 3

3.1.1 OLE and COM . 3
3.1.2 Interfaces . 3

3.2 How does DCOM work? . 4
3.2.1 The combined power of COM and RPC 4

3.3 What we know so far . 5

4 The spark 6
4.1 Lateral movement using DCOM . 6

4.1.1 Preliminary Investigation . 6
4.1.2 The importance of the AppID . 7

5 The idea 9
5.1 Task Overview . 9
5.2 Preliminary Checks . 10

5.2.1 Windows Powershell Remote Sessions 10
5.2.2 Windows Firewall RPC rule . 10
5.2.3 Retrieving all DCOM applications on a machine 11
5.2.4 Microsoft Windows TrustedHosts 11

6 The solution 12
6.1 Creating a persistent session . 12
6.2 Checking the Windows Firewall RPC rule 12
6.3 Get all the DCOM! . 13
6.4 Checking LaunchPermissions . 13

6.4.1 Mounting HKEY_CLASSES_ROOT 14
6.4.2 Looping over the registry . 14

6.5 Finding the CLSID’s . 14
6.5.1 The AppID Regex . 14
6.5.2 Retrieving the CLSID’s . 15

6.6 Counting Members . 15
6.6.1 Default MemberType Count . 16

iv

6.6.2 Blacklisting non-interesting / bad CLSID’s 16
6.6.3 Retrieving interesting CLSID’s 17

6.7 Determining Vulnerable DCOM applications 18
6.7.1 Vulnerable Subset . 18
6.7.2 Going in-depth . 19

6.8 Putting it all together . 19

7 Proof of Concept 20
7.1 Testing environment . 20

7.1.1 Enabling the WinRM Firewall rule 20
7.2 Running the script . 21

7.2.1 Initial run . 21
7.3 HTML report . 22

7.3.1 Results . 23
7.4 Powershell Empire module . 24

7.4.1 Module information . 24
7.4.2 DCOMrade module in Empire 25

7.5 Abusing the DCOM application . 27

8 Detection 29
8.1 Network Traffic Analysis . 29

8.1.1 WinRM HTTPS Traffic . 29
8.2 Endpoint Analysis . 31

8.2.1 Process Monitoring . 31

9 Conclusion 33

10 Final words 34

Bibliography 35

v

List of Figures

3.1 DCOM Protocol Stack . 4
3.2 DCOM Protocol Overview . 4

4.1 Searching the User Notification CLSID 7
4.2 Activating the DCOM using User Notification CLSID 8

5.1 RPC Allow Firewall rule registry entry 10
5.2 Executing Get�CimInstance Win32_DCOMApplication 11

7.1 Administrative prompt when running the script 21
7.2 Retrieving the DCOM applications . 22
7.3 Retrieving the CLSID of the DCOM applications 22
7.4 Checking possible vulnerable MemberTypes 22
7.5 HTML report showing result for Navigate(2) 23
7.6 Snippet of the HTML report . 23
7.7 Issuing info command in Empire . 25
7.8 invoke_dcomrade output in Empire . 26
7.9 Executing the PoC script on the attacking machine. 28
7.10 Calculator process started on the target machine. 28

8.1 Network capture filtered on HTTP . 30
8.2 SOAP structure present in the HTTPS traffic 30
8.3 wsmprovhost.exe being started . 31
8.4 Query for the user ’Admin’ . 31
8.5 wsmprovhost.exe querying for Powershell 31
8.6 CLSID enumeration with the wsmprovhost.exe process 32

vi

List of Abbreviations

APT Advanced Persistent Threat
CLSID C L a s S I Dentifier
DCOM Distributed Component Object Model
PoC Proof Of Concept
OSCP Offensive Security Certified Professional
SOC Security Operations Center

1

Chapter 1

Introduction

1.1 whoami;

My name is Axel Boesenach and I am a student at the University of Applied Sciences
Leiden. Last year I passed my OSCP exam and ever since I have tried to keep myself
busy learning as much as I can in the information security sector.

Currently I am doing an internship at HackDefense, researching the very topic
that I am presenting in this paper, and working part-time at Fox-IT as a Security An-
alyst in the Security Operations Center.

My interests in the information security sector are broad and I like to throw my-
self into challenges that involve topics I know (almost) nothing about. I only started
to get into scripting seriously during my OSCP journey and want to use this intro-
duction also as a pre-apology for the (probably) very bad written Powershell script
that will be accompanied with the release of this paper. Check out my Github for
some more sore eyes or check out my soundcloud for some sore ears!

https://hackdefense.nl/
https://www.fox-it.com/en/
https://github.com/sud0woodo
https://soundcloud.com/abe-e

2

Chapter 2

Background

2.1 DCOM showcase

Somewhere last year I followed a workshop / showcase by Eva Tanaskoska where
she showed lateral movement using DCOM and giving a short but powerful expla-
nation about how the technique works and why this is such a nice way to hop from
system to system inside of Microsoft Windows domains. At the end of the session I
had a basic idea of how it worked, why it worked and was thinking to myself that
there must be a way to enumerate these vulnerabilities using a automated way. I
asked Eva if she knew about a tool to automatically enumerate these already, she
told me that she didn’t but would like to know if it was possible as well.

Fast forward a couple months to the summer of 2018, I finally had some time to
spend on researching lateral movement using DCOM and started by checking out
other people’s research about DCOM vulnerabilities and how these can be used to
instantiate objects on remote machines.

2.2 Why automate this?

Moving laterally from system to system inside of Microsoft Windows domains while
not using exploits and malware that could trigger endpoint detection, such as an-
tivirus or firewalls, is an art on itself. The lateral movement techniques making use
of DCOM have not been around that long yet and there could be a lot of techniques
that are not discovered yet. The current toolset that is available is based on known
techniques and does not necessarily enumerate all the possibilities that might be
available, and trying to do this by hand is a very time consuming task.

More and more system procedures can be automated in some way. Most of the
solutions providing automation use some form of API or other kinds of interfaces.
With this in mind it should be possible to enumerate the existing (and new) DCOM
techniques used for lateral movement, code execution, etc. on Microsoft Windows
systems.

This research paper will go into the process of creating a basic Powershell script
to enumerate possible vulnerable DCOM applications that can be (ab)used for lateral
movement, as well as some possible detection methods.

3

Chapter 3

(D)COM

In this chapter we will briefly hover over the history of DCOM and how it came to
be what it is today, and how DCOM works from a high-level view.

3.1 History of DCOM

Before the (Distributed) Component Object Model, there was OLE. OLE stands for
’Object Linking and Embedding’, and was intended to be used remotely. It wasn’t
until COM was introduced that this feature was implemented without changing too
much of the existing code to transition from purely local operation to distributed
operation (Microsoft, 2015).

3.1.1 OLE and COM

OLE compound documents enable users working within a single application to ma-
nipulate data written in various formats and derived from multiple sources (Mi-
crosoft, 2018b).

As described in the article, OLE compound document technology rests on a foun-
dation consisting of COM, structured storage, and uniform data transfer. Due to the
scope of this research the researcher will not go into every aspect, the COM object
usage is the most important part as this provides the so called IUnknown Interface
(Microsoft, 2018c) through which clients can obtain pointers to other interfaces.

The interfaces are what makes COM objects usable for attackers, pentesters and
red teamers when living off the land. By querying other interfaces, certain methods
can be called, methods which can lead to executing commands and applications,
starting new services, instantiating other COM objects, etc. It comes as no surprise
that these kind of interfaces are prone to be abused.

3.1.2 Interfaces

The features of a COM object are exposed to an interface (as described in 3.1.1), every
interface has a collection of member functions. Each member in this collection has
its own operation and its own unique Interface Identifier (IID). Software companies
are free to define their own interfaces as long as they use the Interface Definition
Language (IDL). The IDL is used to generate header files that are used by applica-
tions using that interface, and source code to handle Remote Procedure Calls (RPC).
The IDL supplied by Microsoft is based on the DCE IDL, an industry standard for
RPC-based distributed computing (Microsoft, 2018a).

There is also a guide for defining COM interfaces which can be found at the
following location: Defining COM Interfaces - Microsoft

https://docs.microsoft.com/en-us/windows/desktop/com/defining-com-interfaces

Chapter 3. (D)COM 4

3.2 How does DCOM work?

Microsoft has some excellent documentation describing the inner workings of the
Distributed Component Object Model (DCOM), the documentation shows a high
level view of how the DCOM protocol stack looks like (Microsoft, 2017c).

FIGURE 3.1: DCOM Protocol Stack

3.2.1 The combined power of COM and RPC

To make the Component Object Model distributed, it was extended with RPC. Due
to the extensiveness in the protocols this paper will not go into detail about the full
inner workings of the RPC protocol, but we will dive into some of the most impor-
tant aspects.

DCOM Protocol Overview High-Level applications use the DCOM client to ob-
tain object references and make ORPC calls on the object. The DCOM client uses the
Remote Procedure Call Protocol Extensions to communicate with the object server.

FIGURE 3.2: DCOM Protocol Overview

https://msdn.microsoft.com/en-us/library/cc243560.aspx

Chapter 3. (D)COM 5

DCOM activation Activation is described as follows by Microsoft: ”In the DCOM
protocol, a mechanism by which a client provides the CLSID of an object class and
obtains an object, either from that object class or a class factory that is able to create
such objects.” - (Microsoft, 2017a, see page 9). Activation is the term used to describe
the act of creating or finding an existing DCOM application. If we boil it down
the following is important when attempting to activate remote DCOM applications
(Microsoft, 2017b):

• A class identifier CLSID;

• One or more IIDs;

• Optionally, an initialization storage reference.

The CLSID identifies the class of the object to be created and is also the part that is
one of the most important aspects when we go into enumerating possible vulner-
able DCOM applications. The activation returns the object references to the client
application. The client application can also send or receive object references as part
of ORPC calls.

ORPC Calls Whenever a COM object gets activated over the network, an ORPC
Call is made. An ORPC call differentiates itself from RPC by the contents of the Ob-
ject UUID (Universally Unique Identifier) (Microsoft, 2017f), this UUID field carries
an IPID (Interface Pointer Identifier) (Microsoft, 2017d) that specifies the interface
targeted by a given ORPC call on an object (Microsoft, 2017e). The request made
by ORPC can be identified by the PDU (Protocol Data Units) and the ORPCTHIS /
ORPCTHAT fields:

(A) ORPCTHIS (B) ORPCTHAT

3.3 What we know so far

At this point we know how the DCOM protocol is built-up and how it works from a
high-level view. After reading this and delving into the research of others like Matt
Nelson (enigma0x3), the possibilities of abusing DCOM make more sense. From the
above information the following is quite clear;

• To abuse COM activation on a remote machine there has to be an application
that allows instantiation using DCOM;

• A CLSID of a DCOM application is needed to activate it;

• The DCOM application needs to hold an interface that can be used for execut-
ing stuff on the remote machine.

https://twitter.com/enigma0x3

6

Chapter 4

The spark

Before I go into my solution for enumerating DCOM applications that might be vul-
nerable for executing something on a remote machine, I want to briefly talk about
how I got this idea.

4.1 Lateral movement using DCOM

As mentioned in the chapter Background, I followed a showcase about lateral move-
ment using DCOM and was fascinated by the clever method of this technique. Liv-
ing off the land techniques are often a lot stealthier and more suited for moving
through Microsoft Windows domains. It takes an experienced SOC team to spot the
traffic anomalies created by these techniques.

4.1.1 Preliminary Investigation

Before brainstorming about possible solutions to enumerate DCOM applications
that provide lateral movement capabilities, some research on the topic had to be
done.

enigma0x3’s MMC20.Application finding This was the first post that I read that
used a DCOM activated application to laterally move to another Microsoft Windows
system (and possibly the very first technique using DCOM this way). Matt Nelson
a.k.a. enigma0x3 posted a technique using the MMC20.Application to execute com-
mands on a remote machine using a method that was available by activating the
COM class object associated with it (Nelson, 2017a). The MMC20.Application be-
longs to the Microsoft Management Console which is a powerful tool that can alse be
(ab)used to do a lot of things on a Microsoft Windows system, these techniques are
not within the scope of this paper. What is important to know about this Microsoft
Management Console is that its COM class objects can be activated and hold meth-
ods to execute commands on the machine. Matt Nelson found the method named
ExecuteShellCommand, which as its name suggests, executes commands. In this arti-
cle Matt Nelson also describes that when you have access to the local Administrator
account on the other machine, activating the COM object for the MMC20.Application
is not a problem.

https://msdn.microsoft.com/en-us/library/cc303697.aspx
https://docs.microsoft.com/nl-nl/previous-versions/windows/desktop/mmc/view-executeshellcommand

Chapter 4. The spark 7

Later in that same month, Matt Nelson released another post where he describes
the same technique using a different approach. In part 2 of his DCOM lateral move-
ment research Matt Nelson uses the OleView.NET application that was developed
by James Forshaw to explain why the MMC20.Application can be activated by a local
Administrator account due to the lack of explicit LaunchPermissions. The article de-
scribes how to use the OleView.Net application to search for other objects that have
no explicit LaunchPermissions set. The most important thing that I took from this
article was the description of how a CLSID can be used to activate COM objects /
applications without the need to know what the associated ProgID is of the object
/ application. The AppID has a unique identifier that corresponds to every named
executable that is present on a Microsoft Windows system and can be found in the
registry at HKEY_CLASSES_ROOT:\AppID\{GUID}

4.1.2 The importance of the AppID

The AppID is important because it holds information about the LaunchPermission

subkey in the registry, and if this subkey is present with the associated AppID than
that DCOM application probably cannot be activated with a local Administrator
account. With the AppID the associted CLSID can be found since every named ex-
ecutable holds a spot in the Windows registry. It became clear that the associated
CLSID could probably be found when searching for the AppID in
HKEY_CLASSES_ROOT:\CLSID\

Testing assumptions To verify the understanding of Matt Nelson’s description
was tested this with one of the AppID’s on a Windows 10 machine, using the AppID
of the User Notification. This AppID, which is
{0010890e�8789�413c�adbc�48f5b511b3af} holds no subkey with
LaunchPermissions. In theory this could be activated using DCOM by providing
the associated CLSID. This CLSID can be found by searching the registry with the
AppID in the CLSID directory:

FIGURE 4.1: Searching the User Notification CLSID

https://enigma0x3.net/2017/01/23/lateral-movement-via-dcom-round-2/
https://github.com/tyranid/oleviewdotnet
https://technet.microsoft.com/en-us/library/bb633148.aspx
https://docs.microsoft.com/en-us/windows/desktop/com/progid
https://docs.microsoft.com/en-us/windows/desktop/com/appid

Chapter 4. The spark 8

In the above figure it is shown that the associated CLSID was the same as the
AppID, it was verified that this is not always the case, but for now this is the infor-
mation needed to test the activation of the DCOM application. An administrative
Powershell prompt is needed to test out the command in Matt Nelson’s article (Nel-
son, 2017a) but instead of using the ProgID, this was tested using the associated
CLSID as mentiond by Matt Nelson’s round 2 article (Nelson, 2017b) where he acti-
vates it using the GetTypeFromCLSID. After activating the object using the CLSID the
associated methods can be listed with $com |Get�Member

FIGURE 4.2: Activating the DCOM using User Notification CLSID

With the basic understanding of how this technique works, it is possible to go
into the functionalities needed to enumerate this in an automated manner.

9

Chapter 5

The idea

Now that the prerequisites are identified for activating DCOM applications, it is time
to think what the best way is of achieving automated enumeration. The Windows
Powershell scripting language is a powerful tool to automate anything that has to
get information or activate certain components of a Windows system.

5.1 Task Overview

Before writing the actual script, an overview of functions that must be implemented
was derived from the preliminary research and are listed below:

• The automation will be done using Windows Powershell;

• A check for the available DCOM applications on the system must be done first;

• The AppIDs associated with the DCOM applications have to be checked in the
registry to verify that there is no subkey specifying LaunchPermissions;

• All the associated CLSIDs for the DCOM applications that have no explicit
LaunchPermission subkeys in their AppID registry entries, have to be enu-
merated;

• The CLSIDs that have been harvested with the previous step have to be ac-
tivated to check if there are methods that are interesting (in terms of lateral
movement, code execution, starting services, etc.);

• A reporting functionality of the results should be implemented as to give the
tool meaning for blue team purposes as well (preventive auditing of systems).

The above does not entail the complete script, these are only the functionalities
which were identified before starting to write the actual Windows Powershell script.

Please note that the only reason that this script is using the Windows Remote
Management, is to show how the possible vulnerable DCOM applications could be
enumerated whilst not using the DCE/RPC protocols that might be easier to detect
by an IDS/IPS solution. The script will also be released as an Powershell Empire
module which makes use of the already spawned agents that provides the possibility
to enumerate these DCOM applications with an already established pentesting / red
team framework.

https://www.powershellempire.com

Chapter 5. The idea 10

5.2 Preliminary Checks

There are a couple of things that are needed for the enumeration of remote machines.

5.2.1 Windows Powershell Remote Sessions

With Windows Powershell it is possible to start so called PSSessions, these are ses-
sions that provide a persistent connection to a local or remote computer. To instanti-
ate a remote connection, the target machine must allow the Windows Remote Man-
agement connections inside the Windows Firewall and access to a local Administra-
tor account.

5.2.2 Windows Firewall RPC rule

To activate DCOM applications on a remote machine, the Windows Firewall must
allow the RPC connections from external. While this is an easy feat when having
access to the local Administrator on the remote machine, it is still something to take
into consideration when attempting to activate remote DCOM applications.

It is possible to do this with Windows Powershell by using the
New-NetFirewallRule command which is not included by default on most Microsoft
Windows operating systems and without using the netsh command which spins up
an instance of WMI and can trigger alerts easily. There is however another way to
add the RPC rule to the Windows Firewall and that is by using the New-ItemProperty
which is a built-in method of the Windows Powershell Core features.

When adding a rule manually that allows the external RPC connections the exact
entry and the needed strings to add such a rule with the New-ItemProperty method
can be found in the registry at the following location:

FIGURE 5.1: RPC Allow Firewall rule registry entry

The registry entry holds the following value:
'v2.10|Action=Allow|Active=TRUE|Dir=In|Protocol=6|LPort=RPC'

NOTE: The technique that is used in the script does not need the target machine to allow
external RPC connections, however it was chosen to still show how such rules can be added
to a Windows registry as part of the research.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssession?view=powershell-6
https://docs.microsoft.com/en-us/windows/desktop/WinRM/portal
https://docs.microsoft.com/en-us/windows/desktop/WinRM/portal
https://blogs.technet.microsoft.com/heyscriptingguy/2012/11/13/use-powershell-to-create-new-windows-firewall-rules/
https://docs.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh-contexts
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-itemproperty?view=powershell-6

Chapter 5. The idea 11

5.2.3 Retrieving all DCOM applications on a machine

To start building something that automates the mapping of possible vulnerable
DCOM applications a list with all these applications and their AppIDs is needed.
Again Matt Nelson provides a way to do this in his first article (Nelson, 2017b),
giving the command to do this: Get�CimInstance Win32_DCOMApplication

FIGURE 5.2: Executing Get�CimInstance Win32_DCOMApplication

5.2.4 Microsoft Windows TrustedHosts

The final piece that allows Windows Remote Management is to add the target ma-
chine to the TrustedHosts of the attacking machine. To allow for Windows Remote
Management it is necessary to add the machine one wants to connect to, to the
TrustedHosts as described in the Microsoft Windows documentation about config-
uring Windows Remote Management.

Luckily this can be done with a simple Powershell command that adds the host-
name of the target system to the TrustedHosts:

Set�Item WSMan:\localhost\Client\TrustedHosts �Value "[computername]"

�Concatenate

With the gathered information it is possible to build on this, taking the results
outputted by the commands and knowing where to retrieve the rest of the needed
information to form a list of possible vulnerable DCOM applications.

https://docs.microsoft.com/en-us/windows/desktop/WinRM/installation-and-configuration-for-windows-remote-management

12

Chapter 6

The solution

With the basic idea and functions it is possible to build a Windows Powershell script
that provides the automation of the enumeration process. This chapter will dive into
the different parts of the developed script.

6.1 Creating a persistent session

The first and most important part is creating a remote Powershell session on the
target machine. A persistent remote Powershell session can be stored in a variable
which can be accessed anytime when the script needs to retrieve information of the
remote machine.

As stated in Windows Powershell Remote Sessions, access to a local Adminis-
trator account on the target machine is needed to instantiate a remote Powershell
session. With this information however, a persistent Powershell session stored in a
variable can be created as follows:

$session = New�PSSession �ComputerName $computername �Credential

$computername\[Admin user]

Using this session, the Invoke�Command can be called with the �Session and
�ScriptBlock parameters to execute commands on the target machine:

Invoke�Command �Session $session �ScriptBlock {

[commands]

}

The persistent remote Powershell session stays active as long as the
Remove-PSSession command is not executed.

6.2 Checking the Windows Firewall RPC rule

The first thing after creating a remote Powershell session is to check if the RPC fire-
wall rule is present on the system, and if it isn’t to add this rule to the Windows
Firewall. Windows Powershell offers functionalities to access the Windows registry
in a way that would represent it as a list of items (which in essence it kind of is).
Approaching it in this way makes it easy to check if the RPC rule exists by looking
for the following string:

'v2.10|Action=Allow|Active=TRUE|Dir=In|Protocol=6|LPort=RPC'

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/remove-pssession?view=powershell-6

Chapter 6. The solution 13

Searching for strings inside of files, variables, objects, etc. can be achieved by
using the �Match filter, which as the name might suggest, matches content with a
given value. To check the registry for the RPC rule string, the following command
can be executed and will return $True if present, or return $False if it isn’t.

Checking if this rule is present with Powershell can be achieved by executing the
following command:

Get�ItemProperty �Path

Registry::HKLM\System\CurrentControlSet\Services\SharedAccess\

Parameters\FirewallPolicy\FirewallRules |ForEach�Object {

$_�Match 'v2.10|Action=Allow|Active=TRUE|Dir=In|Protocol=6|LPort=RPC'

}

If the rule is present it will continue to the next function to be executed, if the
rule is not yet present the script will attempt to add this rule with the following
command:

Invoke�Command �Session $session �ScriptBlock {

New�ItemProperty �Path

HKLM\System\CurrentControlSet\Services\SharedAccess\Parameters\

FirewallPolicy\FirewallRules �Name RPCtest �PropertyType String �Value

'v2.10|Action=Allow|Active=TRUE|Dir=In|Protocol=6|LPort=RPC|App=any|

Svc=*|Name=Allow RPC IN|Desc=custom RPC allow|'

}

As mentioned in Chapter 5, Windows Firewall RPC rule, this rule does not need
to be added but is shown as part of how one would instantiate the DCOM applica-
tions remotely as part of the research.

6.3 Get all the DCOM!

Before any kind of enumeration of usable DCOM applications can be done, it is nec-
essary to get a list with all of the DCOM applications present on the target system.
The command to retrieve all these applications was already shown in Chapter 5,
Retrieving all DCOM applications on a machine. The only difference between exe-
cuting this on a local machine or executing this on a remote machine is the usage of
the Invoke�Command with the variable holding the persistent Powershell session:

Invoke�Command �Session $session �ScriptBlock {

Get�CimInstance Win32_DCOMapplication

}

The output of this command can be stored in a variable, this output is being used
by the other actions in the enumeration process to match on the AppID.

6.4 Checking LaunchPermissions

One of the prerequisities for activating DCOM applications are the lack of explicit
LaunchPermission being set (Task Overview). The LaunchPermission can be checked
in the Windows registry by checking the subkeys of every AppID. No explicit
LaunchPermission are set if this subkey is missing.

Chapter 6. The solution 14

6.4.1 Mounting HKEY_CLASSES_ROOT

To get access to the HKEY_CLASSES_ROOT\AppID\ directory in the Windows registry,
the HKEY_CLASSES_ROOT has to be mounted with the New�PSDrive Powershell com-
mand. The Windows registry directory can be mounted with the following com-
mand:

Invoke�Command �Session $session �ScriptBlock {

New�PSDrive �Name HKCR �PSProvider Registry �Root HKEY_CLASSES_ROOT

}

6.4.2 Looping over the registry

With the right Windows registry folder accessible on the target machine the subkeys
can be checked for the LaunchPermission subkey. With the following command the
entries in the Windows registry folder get checked and the AppID’s without the
LaunchPermission subkey get stored in a variable:

Invoke�Command �Session $session �ScriptBlock {

Get�ChildItem �Path HKCR:\AppID\ | ForEach�Object {

if(�Not($_.Property �Match "LaunchPermission")) {

$_.Name.Replace("HKEY_CLASSES_ROOT\AppID\","")

}

}

} �OutVariable DefaultPermissionsAppID

By replacing the string prepending the AppID it’s easier to match a pattern on
just the AppID's retrieved from the previous action where all the DCOM appli-
cations were stored in a variable. A simple check which AppID holds no explicit
LaunchPermission can be done by using the Select-String �Pattern Powershell
method:

$DCOMApplications | Select�String �Pattern $DefaultPermissionsAppID

In the above example the variable $DCOMApplications holds the DCOM appli-
cations that were retrieved with the Get�CimInstance Win32_DCOMApplication The
AppID's that have no explicit LaunchPermission set will be stored in a variable that
will be used to retrieve the CLSID of these AppID's.

6.5 Finding the CLSID’s

With the AppID's that hold no explicit LaunchPermission subkeys identified the
search for their associated CLSID's begins.

6.5.1 The AppID Regex

The variable holding these AppID's also holds a lot of other data that was extracted
while looping over the Windows registry. To extract just the AppID of every entry, a
regular expression based on the format shared by the CLSID and AppID was created.
This regular expression is used in multiple places of the script and turned out to be
more useful than initially thought.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-psdrive?view=powershell-6

Chapter 6. The solution 15

Since every entry is build up in the {00000000�0000�0000�0000�000000000000}

format, it is quite easy to develop a regular expression matching the pattern:

'\{(?i)[0-9a-z]{8}-([0-9a-z]{4}-){3}[0-9a-z]{12}\}'

Since the pattern can hold digits as well as characters, it is important to match on
both and have the case-insensitive parameter set: (?i)

Powershell can match on regular expressions by looping over the values stored in
variables, in this case the variable holding the AppID'swithout the LaunchPermission
subkey:

$DefaultLaunchPermission |Select�String �Pattern

'\{(?i)[0-9a-z]{8}-([0-9a-z]{4}-){3}[0-9a-z]{12}\}' |

ForEach�Object {

$_.Matches.Value

}

6.5.2 Retrieving the CLSID’s

The CLSID's can be retrieved with the AppID's as mentioned in Chapter 4, The im-
portance of the AppID. Because this is an action that loops over the Windows reg-
istry on the target machine, it is needed to store any values returned into an array
($DCOMCLSIDs) on the target machine:

Invoke�Command �Session $session �ScriptBlock {

$DCOMCLSIDs = @()

(Get�ChildItem �Path

HKCR:\CLSID\).Name.Replace("HKEY_CLASSES_ROOT\CLSID\","") |

ForEach�Object {

if ($Using:DCOMAppIDs �eq (Get�ItemProperty �Path

HKCR:\CLSID\$_).'AppID') {

$DCOMCLSIDs += "Name: " + (Get�ItemProperty �Path

HKCR:\CLSID\$_).'(default)' + " CLSID: $_"

}

}

}

With the above commands the AppID's are being used to loop over the Windows
registry and search for their associated CLSID. This value gets stored in the array
$DCOMCLSIDs which gets returned, and is used in the script to check the amount of
MemberTypes by activating the DCOM applications with the CLSID's

6.6 Counting Members

To check whether or not a DCOM application might be vulnerable, the MemberTypes

can be counted. The MemberType represents the Property or Method that can be
instantiated after activating a DCOM application on the target machine. All of
the techniques that were investigated during the preliminary research instantiate
a Property or Method that allows code execution or the creation of new services
(Tsukerman, 2018).

Chapter 6. The solution 16

6.6.1 Default MemberType Count

It’s important to check what the default amount of MemberTypes is when activat-
ing DCOM applications as this can already be used to ’blacklist’ a lot of the non-
intersting DCOM applications which in turn reduces the time to run the script and
the load on the target machine. To check the default amount of MemberTypes the
Shortcut DCOM application
({00021401�0000�0000�C000�000000000046}) gets activated. This CLSID is present
on every Microsoft Windows machine as it handles the shortcuts on the system. The
following command can be executed for getting the amount of MemberTypes:

$DefaultMember = [activator]::CreateInstance([type]::GetTypeFromCLSID

("00021401�0000�0000�C000�000000000046","localhost"))

$DefaultMemberCount = ($DefaultMember | Get-Member).Count

By activating a DCOM application, it stays activated until it gets released by the
Marshal Class. To release a DCOM application, the following Powershell command
can be executed:

[System.Runtime.Interopservices.Marshal]::ReleaseComObject(

$DefaultMember)

NOTE: The default amount of MemberTypes can vary between systems, the ’Short-
cut’ CLSID however does not, and thus is a good point for getting the default amount of
MemberTypes.

6.6.2 Blacklisting non-interesting / bad CLSID’s

While getting the amount of MemberTypes for the DCOM applications without the
LaunchPermission subkey, there were a lot of results that either made the script
hang because the DCOM application could not be activated, or because they had the
same amount of MemberTypes as the default and thus were classified as being less /
not interesting. To work around the issue of a non-responsive script the best solution
seemed to devise a blacklist that could be used depending on the Operating System
parameter selected when executing the script.

The blacklist selection can be done by using a switch statement:

switch($os) {

"win7" {

$DefaultBlackList = Get�Content �Path $Win7BlackListFile

Break

}

"win10" {

$DefaultBlackList = Get�Content �Path $Win10BlackListFile

textbraceright

}

In the above example the $DefaultBlackList gets assigned with either the black-
list values for the Microsoft Windows 7 operating system, or the Microsoft Windows
10 operating system. The blacklists for these operating systems were devised by run-
ning the script multiple times and writing down the CLSID's that caused problems
whilst executing the script. The blacklisted values have been tested individually to
verify if these indeed could not be instantiated or if there were problems with the
script which prevented the DCOM application from activating.

https://docs.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.marshal?view=netframework-4.7.2

Chapter 6. The solution 17

6.6.3 Retrieving interesting CLSID’s

Now that there is a method to blacklist known non-intersting / bad CLSID's the
script can be run to actually retrieve the interesting CLSID's. In essence the technique
used for this is the same as getting the default MemberType count that was discussed
in this chapter at Default MemberType Count. The only real difference is that a
check is being done beforehand to determine whether or not the CLSID is present in
the blacklist:

if (�Not ($CLSID | Select�String �Pattern $DefaultBlackList)) {

$MemberCount = Invoke�Command �Session $remotesession �ScriptBlock {

Try {

$COM = [activator]::CreateInstance([type]::GetTypeFromCLSID

("$Using:CLSID","localhost"))

$MemberCount = ($COM | Get�Member).Count

[System.Runtime.Interopservices.Marshal]::ReleaseComObject($COM)

Return $MemberCount

} Catch [System.Runtime.InteropServices.COMException],

[System.Runtime.InteropServices.InvalidComObjectException],

[System.UnauthorizedAccessException] {

[some error action or output]

}

}

After this initial check the $MemberCount that is being returned gets checked
against the default amount of MemberTypes that was determined in Default Mem-
berType Count. If the value is not equal to the default MemberType count and greater
than zero, it gets added to the list with potentially vulnerable DCOM applications
that is being declared as $VulnerableCLSID in the code snippet below:

if (�Not ($MemberCount �eq $DefaultMemberCount) �and ($MemberCount �gt

0)) {

$CLSIDCount += "CLSID: $CLSID MemberType Count: $MemberCount"

$VulnerableCLSID += $CLSID

} else {

$CustomBlackList += $CLSID

}

In the above code snippet the $CLSIDCount is used for future usage in the final
script. This will eventually be used by the reporting function to provide the HTML
report with a list of CLSID's and their MemberType counts if they are not equal to the
default and thus might be interesting to look into. There is also a variable holding the
values that can be added to a custom blacklist, this might prove useful when audit-
ing an environment where the systems were deployed using Windows Deployment
Services for example, and most of the systems are identical.

https://docs.microsoft.com/en-us/windows/desktop/Wds/windows-deployment-services-portal
https://docs.microsoft.com/en-us/windows/desktop/Wds/windows-deployment-services-portal

Chapter 6. The solution 18

6.7 Determining Vulnerable DCOM applications

Now that there is a list with possible vulnerable DCOM applications the script can
attempt to activate each of the DCOM applications and check if there are strings that
might indicate a lateral movement possibility.

6.7.1 Vulnerable Subset

To determine whether or not a DCOM application might be vulnerable, a subset of
strings that were retrieved from the techniques in the articles (Tsukerman, 2018) of
the preliminary research was created.

The list currently consists of the following entries:

• Shell

• Execute

• Navigate

• DDEInitiate

• CreateObject

• RegisterXLL

• ExecuteLine

• NewCurrentDatabase

• Service

• Create

• Run

• Exec

Please note that the above list is by no means the complete list to enumerate all
of the DCOM applications that might prove useful. The idea is that this list can be
changed with dynamic content to either look for specific entries or to be expanded
to include as much entries that need to be checked as the user would like. Another
usage of this list would be if one were to search for a specific functionality such as
starting services for example, giving them the means to do so.

Chapter 6. The solution 19

6.7.2 Going in-depth

With a subset of strings to look for when activating the DCOM applications with the
CLSID retrieved from the previous steps, it is time to activate each of these and check
if any of the strings in the subset are present.

NOTE: Due to the size of the recursion that goes through the MemberTypes the code shown
will only go until depth level one. You can find the full recursion in the Powershell script on
Github.

$VulnerableCLSIDs | ForEach-Object {

$CLSID = $_

$Vulnerable = Invoke�Command �Session $session �ScriptBlock {

COM = [activator]::CreateInstance([type]::GetTypeFromCLSID(

$Using:CLSID, "localhost"))

$VulnCOM = @()

$COM | Get�Member | ForEach�Object {

if ($_.Name | Select�String �Pattern $Using:VulnerableSubset) {

$VulnCOM += "[+] Possible Vulnerability found: $_ CLSID:

$Using:CLSID Path: " + '$COM' + "." + $_.Name

}

}

}

}

The above code snippet loops through the values stored in $VulnerableCLSIDs

and assigns the value it loops over ($_) to the variable $CLSID. A new variable
is created which holds the value that gets returned by the Invoke�Command. Every
$CLSID will be attempted to activate on the target machine, but by using localhost,
no DCE/RPC traffic is being generated on the network that could give away what is be-
ing activated. A new variable $VulnCOM is created to be used as an array to store the
possible vulnerable DCOM application(s). The MemberTypes of the activated DCOM
appliction are being looped over, each of the MemberType names are checked if they
contain a string that is present in the Vulnerable Subset. If the DCOM application
holds one of the strings that is also present in the vulnerable subset, it gets added to
the array of $VulnCOM.

6.8 Putting it all together

This is really all that is needed to enumerate the DCOM applications and checking
if they might hold a vulnerable Property or Method. In the next chapter a quick run
of the script is being executed on a Windows 10 x64 machine.

https://github.com/sud0woodo/DCOMrade

20

Chapter 7

Proof of Concept

7.1 Testing environment

The testing environment for this paper consists of two Windows 10 (1803) x64 ma-
chines, both have the latest updates installed. In this test setup the following IP-
addresses were used:

• Attacking machine: 10.10.30.105

• Victim machine: 10.10.30.108

7.1.1 Enabling the WinRM Firewall rule

To execute the script successfully, the target machine needs to allow the Windows
Remote Management connections. There are existing rules available for allowing
these connections, see the following guide on how to enable this through the Win-
dows Firewall.

NOTE: By default the WinRM service does not allow Powershell remoting when the
machine’s network profile is set to ’public’. This is not a problem inside of Microsoft
Windows domains but might be if you use this script for testing purposes. To enable this on
computers with a networkprofile set to ’public’, execute the following command:

Enable-PSRemoting -SkipNetworkProfileCheck -Force

DO NOT RUN ABOVE COMMAND ON A HOST MACHINE

https://www.hammer-software.com/how-to-enable-windows-remote-management-through-the-windows-firewall-with-advanced-security-using-group-policy/

Chapter 7. Proof of Concept 21

7.2 Running the script

Now that the functionalities of the script are written down it is time to go into the
workings of the script that was made. In this chapter the initial run will be shown
as well as the output that is formatted in a HTML report.

7.2.1 Initial run

As discussed in Chapter 5 Windows Powershell Remote Sessions, local Administra-
tive access on the target machine is needed to successfully run the script. The script
can be run from a Powershell session on the attacking machine with the following
parameters:

• computername - The computername or IP-address of the target machine;

• user - the username of the Administrative account on the target machine;

• domain - when testing in a domain this parameter should hold the name of the
domain;

• os - the operating system present on the target machine, current supported
operating systems are Windows 7, Windows 10, Windows Server 2012 (R2)
and Windows Server 2016 (R2).

NOTE: The script will work on any machine that has Powershell installed and allows
Windows Remote Management sessions, but due to the CLSID’s that can possibly make the
script hang it is advised to create a blacklist of CLSID’s that can’t be instantiated or are not
interesting to enumerate in the first place.

When executing the script with the above parameters an Administrative prompt
will pop-up asking for the password of the Administrator account on the target ma-
chine:

FIGURE 7.1: Administrative prompt when running the script

After the session has been established the script walks through the steps as de-
scribed in Chapter 6, The solution, starting with retrieving a full list of DCOM ap-
plications and checking these for default permissions:

Chapter 7. Proof of Concept 22

FIGURE 7.2: Retrieving the DCOM applications

The DCOM applications without the LaunchPermission subkey get written to a
textfile for later usage. With this list the CLSID of each DCOM applications that has
no LaunchPermission subkey gets enumerated and their MemberTypes get counted:

FIGURE 7.3: Retrieving the CLSID of the DCOM applications

With the CLSID of each DCOM application, the script attempts to activate each
one to check if there is a MemberType Property or Method that indicates a possibility
to execute code, start services, etc:

FIGURE 7.4: Checking possible vulnerable MemberTypes

This pretty much is the entire script, running the script takes between the two to
five minutes depending on how good the blacklist is (filtering known bad CLSID's).
The results of the script get written to a HTML report, which will be discussed below.

7.3 HTML report

The HTML report is in no way sophisticated and is build up to give a quick overview
of the findings. The report is divided into the following sections:

• OS Info - Information about the operating system present on the target ma-
chine;

• Possible Vulnerable DCOM - List with the CLSID, MemberType name and the
path that would need to be instantiated to abuse the DCOM application (if
vulnerable);

• Interesting CLSIDs - List with CLSID's and their MemberType count per CLSID.
This list is present to show which CLSID holds an amount of MemberTypes that
differ from the default amount and thus might be interesting to look into;

• DCOM Applications with Default Permissions - A list of DCOM applica-
tions that do not have the LaunchPermission subkey present in the Windows
registry;

• DCOM Applications on [computername or IP-address] - List with DCOM
applications present on the target machine.

Chapter 7. Proof of Concept 23

7.3.1 Results

The HTML report shows the known DCOM applications that can be abused for lat-
eral movement or other malicious purposes. As an extra it also shows the different
depths, the following image is an example of how the Navigate2 Method exists on
multiple layers after activating the DCOM application associated with Internet Ex-
plorer:

FIGURE 7.5: HTML report showing result for Navigate(2)

Knowing the vulnerable Property and / or Method on different depths could
provide the possibility to abuse DCOM applications which are blocked on just one
depth.

Let’s say for instance that there is an endpoint detection rule for $COM.Navigate,
a way to circumvent this would be to activate the
$COM.Aplication.Application.Navigate. Ofcourse this is just a simple example,
the list with possible vulnerable DCOM applications that contain known strings to
look for as described in Chapter 6, Vulnerable Subset, is quite extensive:

FIGURE 7.6: Snippet of the HTML report

Chapter 7. Proof of Concept 24

7.4 Powershell Empire module

If the Windows Remote Management service would always be available, there would
be little use for a tool like this since one would be able to simply start an interactive
session and roam free on the system that way. To harness the script’s possible po-
tential it was modified to also work with the Powershell Empire framework.

The module can be used, and is tested with, the Powershell Empire HTTP listener
agent.

7.4.1 Module information

This section will go into the Powershell Empire module and why it is a little bit
different than the original script. Please note that the author is not familiar with
developing Powershell Empire modules, some parts of the script were left out in-
tentionally while some parts might need some work (hopefully the community will
jump on this).

Since Powershell Empire is an open source project it gets a lot of contributions
from the security community. Some parts were rewritten to get the script to work
with the Powershell Empire framework since the original script makes use of a re-
mote technique, and the Powershell Empire agents are running locally. This part
will not go into all the differences, the code can be viewed on the Github page.

Adding the module To port the script to Powershell Empire the video tutorial
posted on Youtube by IppSec was used as a reference. Adding the module to Em-
pire Powershell can be done by using one of the templates that are included with
the framework. The framework supports Python and Powershell modules, for this
script the Powershell template was used.

Since the enumeration process is probably most valuable when looking for ma-
chines to move laterally, the module was placed in the Powershell Empire folder
for lateral movement and has the name Invoke�DCOMrade.ps1 (or invoke_dcomrade
when issuing the usemodule command)

Module parameters One of the differences are the parameters, the following pa-
rameters are available for the Powershell Empire module:

• Agent - This is needed to make the module work with the Empire Agents;

• Computername - The computername of the target system, default is set to localhost

since the agent already runs on the target system;

• User - The name of the (local) Administrator account that is present on the
target system;

• OS - The operating system of the target system. The following operating sys-
tems have been tested and are supported: Windows 7 (win7), Windws 10
(win10), Windows Server 2012 / R2 (win2k12), and Windows Server 2016
(win2k16). The default setting is win10

https://www.powershellempire.com/
https://github.com/sud0woodo/DCOMrade/tree/master/Empire
https://youtu.be/6l4ZIKwzW8U
https://twitter.com/ippsec

Chapter 7. Proof of Concept 25

Module output The output of the script has been modified from the original script
that makes use of the Windows Remote Management services. The Powershell Em-
pire module does not write the output to a HTML report or textfiles anymore since
this will raise suspicion on the target system. The Powershell Empire module only
outputs the interesting CLSID’s (Retrieving interesting CLSID’s) and the possible
vulnerable DCOM applications (Determining Vulnerable DCOM applications).

7.4.2 DCOMrade module in Empire

With everything in place and configured correctly, the module can be run. This pa-
per will not go into how to use the Powershell Empire framework to spawn agents
on a machine, for this usecase a HTTP listener was used and a Powershell Empire
agent has been activated, giving us the possibility to run Powershell Empire mod-
ules on the target machine.

Using the module To run the module on the target system the usemodule com-
mand needs to be issued with the technique and name of the script:

usemodule lateral_movement/invoke_dcomrade

Setting the parameters When setting the parameters it is good to know that there
are some default settings (see Module parameters for the default settings). When us-
ing the defaults, the only other parameter that needs to be set is the User parameter.
For this example the local Administrator account on the target system has the name
’Admin’.

FIGURE 7.7: Issuing info command in Empire

Chapter 7. Proof of Concept 26

Executing the module When the parameters are set correctly, the module can be
executed with the execute command. The verbose output is one of the issues that
still need to be worked out at the time of writing, currently it is not possible to show
the script verbosity for some reason.

NOTE: Please note that this module is NOT ’opsec’ safe, meaning that it is easy to detect
when an experienced defender is monitoring the system.

After a couple minutes the script’s outputs are shown in the terminal:

FIGURE 7.8: invoke_dcomrade output in Empire

Chapter 7. Proof of Concept 27

7.5 Abusing the DCOM application

The script provides a quite extensive list of DCOM applications that could be (ab)used.
To prove that the script shows the right DCOM applications, one of the results was
tested, using the Navigate method that is present on depth level four:
$COM.Aplication.Application.Navigate.

A small script was written that activates the DCOM application using a Power-
shell remote session, and execute the Windows calculator executable on the target
system with CLSID {c08afd90-f2a1-11d1-8455-00a0c91f3880}:

param(

[Parameter(Mandatory=$True,Position=1)]

[String]$computername,

[Parameter(Mandatory=$True,Position=2)]

[String]$user,

[Parameter(Mandatory=$True,Position=3)]

[String]$clsid

)

$session = New�PSSession �ComputerName $computername �Credential

$computername\$user

Invoke�Command �Session $session �ScriptBlock {

$COM = [activator]::CreateInstance([type]::GetTypeFromCLSID

($Using:clsid, "localhost"))

$COM.Application.Application.Navigate("C:\Windows\System32\calc.exe")

}

NOTE: The above script is not part of the full script and just an example showing how the
findings could be tested, in this example testing to execute an executable.

Chapter 7. Proof of Concept 28

Executing the script, using {c08afd90-f2a1-11d1-8455-00a0c91f3880} (Shell-
BrowserWindow), on the attacking machine prompts the Administrator password
just like the DCOM enumeration script:

FIGURE 7.9: Executing the PoC script on the attacking machine.

Which results in a calculator process being started on the target machine:

FIGURE 7.10: Calculator process started on the target machine.

NOTE: The ShellBrowserWindow is not a new vulnerable DCOM application, this is
just to showcase the automated finding of using a Method of ShellBrowserWindow that is
buried deeper.

29

Chapter 8

Detection

In this chapter the detection part will be discussed. Please note that the information
presented in this chapter is by no means complete and there might be many more
indicators of this technique and methods.

8.1 Network Traffic Analysis

The automated enumeration of the possible vulnerable DCOM applications gener-
ates a lot of network traffic due to the retrieval of DCOM applications, looping over
the registry and activating DCOM applications using their CLSID is all done using
Windows Remote Management.

Analyzing network traffic can be done with a multitude of tools. The most well
known tool for this job is Wireshark, which will also be used for the traffic analysis
in the next subsection.

8.1.1 WinRM HTTPS Traffic

The traffic that is being generated from running the script is all encrypted using
HTTPS as described in the ’Web Services for Management (WS-Management) Spec-
ification’:

"For services that support HTTPS, the transport layer handles negotiation of the proper
encryption protocol"((DMTF), 2014)

When analyzing the network traffic that was captured from the attacking ma-
chine a couple of things stand out right away:

• Powershell version - The Powershell version used is shown in the POST request
that is being made to the target machine;

• User involved - The user involved is shown in the POST request that is being
made to the target machine, this is the Administrative user on the target ma-
chine;

• Encrypted sessions - All of the HTTP traffic is encrypted, this is also shown in
the metadata of the packets (application/http-spnego-session-encrypted);

• Destination port 5985 - The Windows Remote Management service always
uses destination port 5985 to communicate with the target machine.

https://www.wireshark.org/

Chapter 8. Detection 30

FIGURE 8.1: Network capture filtered on HTTP

Opening the PCAP with the captured network traffic and applying a filter to only
show the HTTP traffic shows the above items in a clear way:

When using the Follow TCP Stream functionality of Wireshark it is clear that
the SOAP structure is being used as described in the Web Services for Management
(WS-Management) Specification ((DMTF), 2014):

FIGURE 8.2: SOAP structure present in the HTTPS traffic

Actual detection on the network portion might be quite difficult since the Win-
dows Remote Management Protocol could be used for legitimate purposes and does
not always indicate malicious activities. The network analysis in combination with
endpoint detection could however give a better indication of malicious presence /
activities by correlating both occurrences within a certain timeframe.

A generic Snort rule could be written to indicate the usage of the Microsoft
WinRM Client, checking the endpoint after this rule is being triggered could pro-
vide a good detection surface for the enumeration of DCOM applications:

alert tcp any any �> any 5985 (msg:"Microsoft WinRM Client User�Agent

Detected";content:"POST";http_method;content:"User�Agent: Microsoft

WinRM Client";flow:to_server;sid:31337;rev:1)

https://www.snort.org/

Chapter 8. Detection 31

8.2 Endpoint Analysis

Normally when activating DCOM applications remotely the DCE/RPC protocol is be-
ing used which shows exactly which Interface is being called on the target ma-
chine. With this Powershell script everything is being activated locally which means
that the DCE/RPC protocol is not being used and thus it might be harder to detect this
kind of traffic and what is being activated on the target machine.

8.2.1 Process Monitoring

A process monitoring recording was made with Microsoft’s Procmon. Procmon is a
tool that shows a realtime overview of all the processes and records their presence,
this allows an overview of all the processes that were also closed within an instant.

When starting the script on the attacking machine and looking at the processes
created on the target machine, it is shown that the wsmprovhost.exe is started which
provides the Windows Remote Management that the attacking machine is request-
ing:

FIGURE 8.3: wsmprovhost.exe being started

After this process is created a query looking for the username provided as local
Administrator is being carried out on the target machine:

FIGURE 8.4: Query for the user ’Admin’

When the local Administrator account is successfully accessed the wsmprovhost.exe
queries the Windows registry for the version of Powershell to use to carry out the
commands invoked by the attacking machine:

FIGURE 8.5: wsmprovhost.exe querying for Powershell

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

Chapter 8. Detection 32

After the Powershell query there are a lot of CLSID queries being made by the
wsmprovhost.exe process:

FIGURE 8.6: CLSID enumeration with the wsmprovhost.exe process

When tying all of these indicators together it should be possible to create end-
point detection for these kind of enumeration techniques. Due to a lack of knowl-
edge on the subject of creating endpoint detection, this paper will not go into how
to build such a detection mechanism.

33

Chapter 9

Conclusion

The previous chapters should’ve given a pretty good impression why and how to
use this tool. This chapter will go into the author’s conclusion and his view on
how the tool could be applied as well as how looking at security challenges with an
attacking mindset can help defending against it.

Automating the process of possible vulnerable DCOM applications is possible. This
can be achieved by simple analysis of the components that make up the technique
and approaching this with a minimal amount of programming mindset.

Red Team purpose The tool should provide a means for red teams to automate
possible lateral movement points and not having to do this by hand. Living off the
land often goes undetected because of the usage of build-in functionalitities of the
operating system. By minimizing the time spend on lateral movement the end goal,
exfiltration of data, can be achieved quicker.

Blue Team purposes By providing the blue teams with information on the
possibility to automatically enumerate possible lateral movement points,
preventive measures can be taken. By running the script on machines within a
corporate and / or private environment a quick report can indicate which DCOM
applications should be looked into. This will aid in hardening the security of the
system, and having the right information at hand to detect these techniques if a red
team or attacker would execute them.

By looking at security problems with an attacking mindset a new way of defending
can be achieved. If it’s not a new technique or solution that will defend against the
latest and greatest attacks, it will at least be a mindset that will aid in developing a
habit to not even trust the build-in functionalities of an operating system and
deploy preventive measures to protect against attackers. Being the attacker is fun,
but one has to keep in mind the ethical side of the knowledge that one is applying
and distributing.

34

Chapter 10

Final words

DCOMrade, the name that was given to this tool, should provide a way to enu-
merate DCOM applications present on a target machine without too much effort.
Having a way to speed up tasks that could easily take hours when done by hand is a
welcome addition to the toolbox of a penetration tester, red team, but also attackers
with more malicious purposes.

Security researchers that investigate new ways to circumvent detection, develop
tooling for the latest exploit techniques, research badly documented areas, etc. al-
ways have to keep in mind a certain ethical approach as to how to communicate
their findings to the outside world. One man’s findings could be the next APT’s
treasure to give them access to systems and processes they shouldn’t have access to
and possibly threaten a society. It is therefore important that new techniques should
not only be made public in how to use these but also be documented as to how to
protect, detect or possibly mitigate against it. The author therefore hopes that with
releasing this paper, that describes how to abuse a part of the Microsoft Windows
operating system, also gives the security community a way to research methods and
techniques that can mitigate these risks in critical company and / or private envi-
ronments. Thank you for your time and feel free to contact me for any questions and
/ or comments: a.boesenach@hackdefense.nl

mailto:a.boesenach@hackdefense.nl

35

Bibliography

(DMTF), Distributed Management Task Force (Sept. 2014). “Wireshark Homepage”.
In: Microsoft Web Services, p. 162. URL: https://www.wireshark.org/.

Microsoft (2015). “History of DCOM”. In: Microsoft Developer Network / Visual Studio
2015. URL: https://msdn.microsoft.com/en-us/library/6zzy7zky.aspx.

— (Dec. 2017a). “Activation”. In: [MS-DCOM]: Distributed Component Object Model
(DCOM) Remote Protocol, p. 9. URL: https : / / winprotocoldoc . blob . core .
windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf.

— (Dec. 2017b). “Activation”. In: [MS-DCOM]: Distributed Component Object Model
(DCOM) Remote Protocol, pp. 16–17. URL: https://winprotocoldoc.blob.core.
windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf.

— (Dec. 2017c). “DCOM Protocol Stack Overview”. In: [MS-DCOM]: Distributed
Component Object Model (DCOM) Remote Protocol, p. 15. URL: https://winprotocoldoc.
blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM]

.pdf.
— (Dec. 2017d). “Interface Pointer Identifier”. In: [MS-DCOM]: Distributed Compo-

nent Object Model (DCOM) Remote Protocol, p. 10. URL: https://winprotocoldoc.
blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM]

.pdf.
— (Dec. 2017e). “ORPC Calls”. In: [MS-DCOM]: Distributed Component Object Model

(DCOM) Remote Protocol, p. 17. URL: https://winprotocoldoc.blob.core.
windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf.

— (Dec. 2017f). “Universally Unique Identifier”. In: [MS-DCOM]: Distributed Com-
ponent Object Model (DCOM) Remote Protocol, p. 12. URL: https://winprotocoldoc.
blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM]

.pdf.
— (May 2018a). “COM Objects and Interfaces”. In: Component Object Model (COM).

URL: https : / / docs . microsoft . com / en - us / windows / desktop / com / com -
objects-and-interfaces.

— (May 2018b). “Compound Documents”. In: Component Object Model (COM). URL:
https://docs.microsoft.com/en- us/windows/desktop/com/compound-

documents.
— (Oct. 2018c). “IUnknown interface”. In: Component Object Model (COM) / IUn-

known Interface. URL: https://docs.microsoft.com/en-us/windows/desktop/
api/Unknwn/nn-unknwn-iunknown.

Nelson, Matt (Jan. 2017a). “LATERAL MOVEMENT USING THE MMC20.APPLICATION
COM OBJECT”. In: LATERAL MOVEMENT USING THE MMC20.APPLICATION
COM OBJECT. URL: https://enigma0x3.net/2017/01/05/lateral-movement-
using-the-mmc20-application-com-object/.

— (Jan. 2017b). “LATERAL MOVEMENT VIA DCOM: ROUND 2”. In: Lateral Move-
ment via DCOM: Round 2. URL: https://enigma0x3.net/2017/01/23/lateral-
movement-via-dcom-round-2/.

https://www.wireshark.org/
https://msdn.microsoft.com/en-us/library/6zzy7zky.aspx
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-DCOM/[MS-DCOM].pdf
https://docs.microsoft.com/en-us/windows/desktop/com/com-objects-and-interfaces
https://docs.microsoft.com/en-us/windows/desktop/com/com-objects-and-interfaces
https://docs.microsoft.com/en-us/windows/desktop/com/compound-documents
https://docs.microsoft.com/en-us/windows/desktop/com/compound-documents
https://docs.microsoft.com/en-us/windows/desktop/api/Unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/en-us/windows/desktop/api/Unknwn/nn-unknwn-iunknown
https://enigma0x3.net/2017/01/05/lateral-movement-using-the-mmc20-application-com-object/
https://enigma0x3.net/2017/01/05/lateral-movement-using-the-mmc20-application-com-object/
https://enigma0x3.net/2017/01/23/lateral-movement-via-dcom-round-2/
https://enigma0x3.net/2017/01/23/lateral-movement-via-dcom-round-2/

Bibliography 36

Tsukerman, Philip (Jan. 2018). “NEW LATERAL MOVEMENT TECHNIQUES ABUSE
DCOM TECHNOLOGY”. In: DCOM lateral movement techniques. URL: https://
www.cybereason.com/blog/dcom-lateral-movement-techniques.

https://www.cybereason.com/blog/dcom-lateral-movement-techniques
https://www.cybereason.com/blog/dcom-lateral-movement-techniques

	Abstract
	Acknowledgements
	Introduction
	whoami;

	Background
	DCOM showcase
	Why automate this?

	(D)COM
	History of DCOM
	OLE and COM
	Interfaces

	How does DCOM work?
	The combined power of COM and RPC

	What we know so far

	The spark
	Lateral movement using DCOM
	Preliminary Investigation
	The importance of the AppID

	The idea
	Task Overview
	Preliminary Checks
	Windows Powershell Remote Sessions
	Windows Firewall RPC rule
	Retrieving all DCOM applications on a machine
	Microsoft Windows TrustedHosts

	The solution
	Creating a persistent session
	Checking the Windows Firewall RPC rule
	Get all the DCOM!
	Checking LaunchPermissions
	Mounting HKEY_CLASSES_ROOT
	Looping over the registry

	Finding the CLSID's
	The AppID Regex
	Retrieving the CLSID's

	Counting Members
	Default MemberType Count
	Blacklisting non-interesting / bad CLSID's
	Retrieving interesting CLSID's

	Determining Vulnerable DCOM applications
	Vulnerable Subset
	Going in-depth

	Putting it all together

	Proof of Concept
	Testing environment
	Enabling the WinRM Firewall rule

	Running the script
	Initial run

	HTML report
	Results

	Powershell Empire module
	Module information
	DCOMrade module in Empire

	Abusing the DCOM application

	Detection
	Network Traffic Analysis
	WinRM HTTPS Traffic

	Endpoint Analysis
	Process Monitoring

	Conclusion
	Final words
	Bibliography

